# Variability of Black Hole Accretion discs

Michael Mayer & J.E. Pringle

Institute of Astronomy
Cambridge

## Timing from AGN and XRB 1/2



from Markowitz & Uttley (2005)

## Timing from AGN and XRB 2/2



## Connection to structure and spectrum

#### high/soft state







#### low/hard state







Spectra and PDS from McClintock et al. (2003)

## Connection to structure and spectrum

high/soft state

low/hard state











PDS from McClintock et al. (2003)

## Variability



Data from Kalemci et al. (2004), Miyamoto et al. (1994), Nowak et al. (2001)

## The Problem

$$R = 3R_{\rm S} \qquad \qquad R = 500R_{\rm S}$$

dynamical timescale

$$au_d = rac{1}{\Omega_{
m K}} = 0.4 \; 
m ms \quad au_d = 0.5 \; 
m s$$

Luminosity

$$L_3/L_{500} \approx 200$$

- Never get amplitude and timescale of flickering right at the same time
- Flickering in outer disc is dispersed on the viscous timescale  $\tau_v \gg \tau_d \Longrightarrow$  No flickering visible

## The solution: King et al. (2004)

- magnetic dynamos acting in grid cells of width H
- poloidal magnetic field ( $B_z \ll 4\pi\alpha P$ ) changes on about the dynamical timescale
- Most of the time



Sometimes



Alignment and viscous timescale

$$au_{\rm mag} \propto 2^{R/H} au_d \qquad au_{\nu} \propto (R/H)^2 au_d$$

## 1D model

- one-zone approximation
- time-dependent viscous and thermal evolution
- self-adaptive grid (scale height ≈ grid cell width)



## Results: Lightcurves



10 M<sub> $\odot$ </sub> black hole,  $\dot{M}=0.5\dot{M}_{\rm Edd}$ ,  $\alpha=0.1$ ,  $R_A/R=3$ 

$$\alpha = \frac{B_{disc}^2}{4\pi P}$$
  $\beta_S = \frac{B_{z,max}}{B_{disc}}$ 

## Results: Power density spectra





10  $M_{\odot}$  black hole,  $\dot{M}=0.5\dot{M}_{\rm Edd}$ ,  $\alpha=0.1$ ,  $R_A/R=3$ 

$$\alpha = \frac{B_{disc}^2}{4\pi P}$$
 $\beta_S = \frac{B_{z,i}}{B_{disc}}$ 

#### Conclusions

- Extension of the King et al. (2004) model to include detailed disc structure
- Constrain parameter  $\beta_S \leq 0.25$  to account for observational results
- Shape and normalisation of the power spectra can be reproduced, i.e. timescales and amplitudes
- The only physical model reproducing rms-flux relation and bicoherence
- Further details in Mayer & Pringle (2006)

#### Outlook

- Time-dependent two-phase accretion disc (corona+disc)
- Use sandwich geometry
- Exchange of energy/mass between corona and disc
- Model of the low/hard state
- Combine with the flickering

# Stationary solutions



M=10 M<sub> $\odot$ </sub>,  $f_c = \dot{M}_c / \dot{M} = 0.1$ ,  $R = 30R_S$ ,  $\alpha = 0.1$